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Abstract
The idea that maladaptive stress impairs cognitive function has been a cornerstone of

decades in basic and clinical research. However, disparate findings have reinforced the

need to aggregate results from multiple sources in order to confirm the validity of such

statement. In this work, a systematic review and meta-analyses were performed to aggre-

gate results from rodent studies investigating the impact of chronic stress on learning and

memory. Results obtained from the included studies revealed a significant effect of stress

on global cognitive performance. In addition, stressed rodents presented worse consolida-

tion of learned memories, although no significantly differences between groups at the

acquisition phase were found. Despite the methodological heterogeneity across studies,

these effects were independent of the type of stress, animals’ strains or age. However, our

findings suggest that stress yields a more detrimental effect on spatial navigation tests’ per-

formance. Surprisingly, the vast majority of the selected studies in this field did not report

appropriate statistics and were excluded from the quantitative analysis. We have therefore

purposed a set of guidelines termed PROBE (Preferred Reporting Orientations for Behav-

ioral Experiments) to promote an adequate reporting of behavioral experiments.

1. Introduction

Stress exposure is associated with an activation of the hypothalamic-pituitary-adrenal (HPA)
axis[1]. Although this relationship is thought to be bi-directional, here we focus on the causal
effect of stress on HPA axis. Repeated stress exposure is known to lead to an excessive HPA
axis activation, resulting in an overproduction of glucocorticoids (GCs). As a consequence,
neurochemical and neuroanatomical alterations in several brain regions may be observed,
including the hippocampus, prefrontal cortex, amygdala[2], dorsal striatum[3], nucleus
accumbens[4], bed nucleus of the stria terminalis[5] and brain stem[6]. In the particular case
of the hippocampus, a high density of GC receptors has been found[7–10]. Indeed, as a
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consequence of GCs overproduction, neuronal atrophy as well as decreased neurogenesis have
been observed in the dentate gyrus of the hippocampal formation[11].

In experimental settings, several protocols of chronic stress induction have been devised.
Among these, the Chronic Mild Stress (CMS) and the Chronic Restraint Stress (CRS) protocols
have been the most widely used in behavioral research. In a typical CMS protocol, animals are
exposed to unpredictable stressors over a varying period of time (from days to several weeks)
[12]. On the contrary, in CRS protocols, the same stressor (restraining) is repeatedly applied
[13, 14]. Some authors have demonstrated that the repeated exposition to stress leads to
impaired hippocampal-dependent functions[15, 16] (also confront with[17, 18]) in several cog-
nitive paradigms, such as the radial armmaze (RAM)[19], the Morris water maze (MWM)
[20], the novel object recognition task (NOR)[21], and the YMaze (YM)[22] (see also [23],[24]
for review). RAM andMWM are widely used experimental apparatus in which navigational
and allocentric strategies are required; whereas, NOR and YM evaluate animals’ discrimination
ability (novelty and path alternation, respectively).

The impact of chronic stress on cognitive performance is thought depend of biological (such
as sex) and chronobiological (age) factors[25, 26]. Other aspects, including stress predictability,
may alsomodulate these effects. For instance, it was reported that the implementation of predict-
able stressors enhances animals’ cognitive performance[27]. Adding further complexity to this
issue, a recent study from our group revealed that the period of the day (diurnal/nocturnal) in
which the stress protocol is implemented alsomodulates cognitive performance[28, 29].

This multi-factorial interplay may explain many of the inconsistencies found in the litera-
ture. Nevertheless, the deleterious impact of stress on cognitive functioning has been a corner-
stone of decades of research. Many basic and clinical studies have departed from an
assumption that has not always been confirmed. Therefore, it is critical to aggregate the data
frommultiple studies in order to clarify the abovementioned discrepancies. In this context,
meta-analysis, though scarcely used in animal studies, is a powerful tool that incorporates the
variability across studies, and allows the achievement of an overall estimate. Thus, it constitutes
the most suitable means to untangle this issue. For this purpose, in this study we conducted a
systematic review and meta-analyses in order to obtain an overall estimate of the impact of
chronic stress on learning and memory in rodents. Furthermore, departing from our own
observations, we also developed a set of guidelines with the aim of improving the quality of
reporting of animal research experiments.

2. Materials and Methods

The systematic-review and meta-analyses adhered to PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses[30]) guidelines, including search strategy, selection cri-
teria, data extraction and data analysis (S1 File).

2.1. Literature search

A comprehensive literature search of electronic databases PubMed (http://www.pubmed.gov)
and SCOPUS (http://www.scopus.com) was concluded in March 2014 with the following key-
words: [‘learning’ AND ‘memory’] OR ‘morris water maze’ OR ‘novel object recognition’]
AND [‘chronic’ AND ‘stress’] AND [‘mice’ OR ‘rats’]. Only experimental studies published in
English were included in this analysis. Reviews, commentaries, as well as unpublished studies
were not considered. Studies were selected if they met all the following criteria:

• implementation of a chronic stress protocol in post-weaning rodents, by applying CMS or
CRS in one of the experimental groups;

Impact of Stress in Learning and Memory in Rodents

PLOS ONE | DOI:10.1371/journal.pone.0163245 September 23, 2016 2 / 24

project “ Better mental health during ageing based

on temporal prediction of individual brain ageing

trajectories (TEMPO)”). PSM is supported by an

FCT fellowship grant, from the PhD-iHES program,

with the reference PDE/BDE/113601/2015.

Competing Interests: The authors have declared

that no competing interests exist.

http://www.pubmed.gov/
http://www.scopus.com/


• at least one control group was required;

• no other manipulation besides chronic stress was performed (e.g. drug treatments, enriched
environment, physical exercise or others);

• experimental subjects were not genetically altered or had compromised functioning due to
lesions or other manipulations;

• learning and memory were assessed in both control and experimental groups using validated
tasks, such as the MWM, NOR, RAM and/or Y-M, after the implementation of the chronic
stress protocol. Tasks requiring negative reinforcement, such as fear conditioning and passive
avoidance tasks (see [31] and [32] for a review)were excluded. These tasks are characterized
by an aversive and stressful nature. As a consequence, they were excluded with the aim of
avoiding confounding effects.

2.2. Data extraction and management

Abstract selection: Two independent reviewers (PSM and PRA) selected eligible studies based
on titles and abstracts’ screening. In the case of disagreements, a third reviewer (PC) decided if
the study fulfilled the inclusion criteria.

To rule out subjectivity in the data gathering and entry process, data was independently
extracted from eligible studies and recorded in separate databases by three reviewers (PC, PSM
and PRA). Data from each study were abstracted using standardized forms in which the follow-
ing characteristics were recorded: first author, publication year, stress protocol type, stress
duration, sample size, animals’ age, gender and strain, and statistical measures for each behav-
ioral parameter (means and standard deviations).Moreover, physiological indices (body
weight, sucrose preference or corticosteroids’ levels) and behavioral measures (locomotor
activity, anxious-like behavior) were also recorded.

If effect sizes could not be extracted/calculated from the available data, corresponding
authors were asked (via e-mail contact) to provide additional statistical information. After-
wards, databases were compared and mismatching entries were identified and corrected upon
discussion between the reviewers.

2.3. Data analysis

Heterogeneity was tested with the CochranQ-test (p<0.10 indicates statistically significant
heterogeneity[33]) and I2 statistic. I2 was calculated as I2 = [(Q–degree of freedom)/Q] ×100,
where Q is the Cochran’s statistic. I2 values of 25, 50 and 75 represent low, medium and high
heterogeneity, respectively. If high and significant heterogeneity (I2>75) was detected, a ran-
dom-effectsmodel (the RestrictedMaximum-Likelihoodmethod) was used to calculate the
summary of pooled prevalence estimates. Otherwise, a fixed-effectsmodel (the Mantel-Haens-
zel method) was preferred.

The presence of potential publication bias was examined through the visual inspection of
funnel plot asymmetry, and statistically tested using the rank correlation method from Begg
and Mazumdar (p<0.05 represents statistically significant publication bias).

Statistical analysis was conducted usingMetafor package[34] in R software.

3. Results

3.1. Study selection

PRISMA diagram (Fig 1) illustrates the process of study selection.
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The initial search yielded 1042 results, 335 of these were duplicated. Sixty-seven studies
were excluded due to (1) not being written in English or (2) consisting of non-original research
studies (e.g. reviews). During the initial screening (title and abstract), the main reasons for
exclusion were: (1) absence/no implementation of stress protocol; (2) induction of stress (acute
or chronic) protocols not considered in this work; (3) stress exposure at prenatal/early life
phases; (4) stress implemented as a consequence of drug administration (e.g. dexamethasone);

Fig 1. PRISMA diagram. Different phases of studies’ selection for conducting qualitative and quantitative analyses.

doi:10.1371/journal.pone.0163245.g001
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and (5) lack of cognitive assessment. At the end of the initial screening, 148 studies were
selected for full-text review. During full-text review, 54 studies were further excluded, mainly
due to: (1) absence of learning and memory assessment with validated behavioral tasks; (2)
implementation of stress protocols not considered in the current work or absence of imple-
mentation of a chronic stress model; (3) use of fear conditioning protocols; (4) non-original
research (review articles); (5) absence of control group.

Afterwards, for the selected studies, statistical measures were obtained either from the pub-
lished paper (n = 15) or through e-mail contact to the corresponding authors (n = 13). Measures
for the remaining studies could not be obtained due to lack of response of corresponding authors
to email contacts. Thus, experiments in which the necessarymeasures for conducting the meta-
analysis could not be calculated (n = 66), were included only in the systematic review. For the
remaining, Cohen’s d (and the associated variance) was calculated as a measure of effect size (and
the deviationmeasure). Cohen’s Kappa revealed a fair/good agreement between raters in the
selection of the studies for the systematic review and meta-analyses (Kappa = .413, p< .001[35]).

3.2. Systematic review findings

Among the selected studies, chronic restraint (n = 49) and chronic mild (n = 45) stress proto-
cols were implemented. With respect to learning and memory assessment, MWMwas used in
50 experiments, NOR in 16, RAM in eight, and Y-Maze in 14. In five studies, other tasks
[Hebb-Williams maze and labyrinth food finding test (n = 2); T-maze (n = 3)] were used. For
studies performingmore than one task, the results were analyzed individually. The majority of
studies included only male animals, with only seven studies reporting findings from female
rodents. With respect to animals’ strain, 38 studies usedWistar rats, 32 male Sprague-Dawley
and four Long-Evans. In mice studies, seven used C57BLmice, five Kunming mice, four ICR
mice, two BALB/C mice, one Lacamice and one study used albino Swiss mice.With respect to
physiological changes following stress implementation, the stress group displayed reduction in
body weight in 82% of the studies, stressed animals presented decreased sucrose preference in
92% of the studies, and corticosterone levels were augmented in stressed animals in 83% of the
studies.
3.2.1. Morris water maze. Overall, studies revealed that different types of chronic stress

produce changes in cognition. Specifically, with respect to the MWM task, the majority of the
studies (n = 28) report an absence of significant differences between the latency to reach the
platform in the first acquisition day (Table 1). On the other hand, differences seemed to arise
in the second, and especially third acquisition day, in which stressed animals displayed signifi-
cantly more latency to find the hidden platform. Swimming speed was reported in only 12
studies. Of these, no differences were reported in eight studies, lower speed on stressed animals
were found in one study, higher swimming speed on stressed animals was reported in three
studies.

Results relative to the probe test were reported in 33 studies. Of these, nine reported no dif-
ferences between groups in the assessed parameters (time spent and number of crossings over
the target quadrant and overall swimming speed). Four studies reported less crossings over the
target in the stress group while one study reported the opposite pattern. Seventeen studies
reported that stressed animals spent significantly less time in the target quadrant, only one
study reportedmore time spent in the target quadrant by stressed animals, and no differences
were found in the remaining seven studies. Swimming speed during the probe trial was
reported in four studies with mixed results being reported: stresses animals displayed slower
speed in two studies, higher speed in one, and no differences to the control group in stressed
animals.
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Table 1. Description of the studies using the MWM task. Characteristics: type of stress, duration, sex, age (and/or initial body weight), comparison of

performance on acquisition days, probe and reversal parameters and differences in corticosterone (or sucrose preference) and body weight between

stressed and control animals.

Study ID Type of

Stress

Animals Sex Age/ Acquisitiona Probea Reversala Stress

Duration

COR/ BW MA

BW SPT

Bessa et al, 2009[44] CMS Wistar rats Male 300–400g Lat: — — S # TQ 6 weeks S # SP — Yes

3M Speed: — S "OQ

Dist: S = C

de Vasconcellos et al,

2005[45]

Wistar rats Male 60d Lat: — S # X — 40 days S " COR — Yes

Speed: — S # TQ

Dist: — S "OQ

S = C lat

First et al, 2011[46] Wistar rats Male 8w Lat: S = C — — 5 weeks — S = C No

Speed: —

Dist: —

Kasar et al, 2009[47] Wistar rats Male 250–300g Lat: S " (day 3) S = C — 21 days — — Yes

Speed: — 6h/day

Dist: —

Quan etal, 2011[48] Wistar rats Male 180–220g Lat: S " (1st

session)

S = C X S # X 21 days S # SP S # No

Speed: — S = C TQ S # TQ

Dist: — S "OQ

Sandi et al, 2006[49] Wistar rats Male 12M Lat: S " (1–3d) — — 4 weeks S " COR S # Yes

Speed: S " (day 1)

Dist: —

Sun et al, 2006[50] Wistar rats Male 150–200g Lat: S " (2–3d) — — 6 weeks — — Yes

Speed: —

Dist: —

Tagliari et al, 2011[51] Wistar rats Male 60d Lat: S " (4–6d) S " lat — 40 days — — No

Speed: — S # TQ

Dist: — S "OQ

Touyarot et al, 2004

[52]

Wistar rats Male 4M Lat: S = C (1–3d) S = C — 21 days S = C COR — No

Speed: S = C

Dist: —

Touyarot et al, 2004

[52]

Wistar rats Male 4M Lat: S " (2d) S # TQ — 21 days S = C COR — No

Speed: S = C

Dist: —

Cunningham et al,

2009[53]

Sprague-

Dawley rats

Male 175–200g Lat: S = C — — 10 days — — No

Speed: —

Dist: S = C

First et al, 2013[54] Sprague-

Dawley rats

Male 8w/300g Lat: S = C — — 4 weeks S: # SP S # No

Speed: —

Dist: —

Gouirand et al, 2005

[55]

Sprague-

Dawley rats

Male 45–60d Lat: S # (2–3d) S # dist — 10 days S = C COR — Yes

Speed: — S #

speed

Dist: — S = C X

S = C TQ

Isgor et al, 2004[56] Sprague-

Dawley rats

Male 21d Lat: S # (trial 1) S = C — 28 days S " COR S

#14%

No

Speed: —

Dist: —

Isgor et al, 2004[56] Sprague-

Dawley rats

Male 21d Lat: S # (trial 1) S = C — 28 days S " COR S = C No

Speed: —

Dist: —

(Continued)
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Table 1. (Continued)

Study ID Type of

Stress

Animals Sex Age/ Acquisitiona Probea Reversala Stress

Duration

COR/ BW MA

BW SPT

Kallarackal et al, 2013

[57]

Sprague-

Dawley rats

Male 3–4w Lat: — — — 6–7 weeks S: # SP — No

Speed: S = C

Dist: —

Li et al, 2009[58] Sprague-

Dawley rats

Male 150–180g Lat: S " (1–3d),

S = C (6–8d)

S # X — 21 days S: # SP

23%

S = C Yes

Speed: S = C S # dist

Dist: — S #

speed

S # TQ

Xi et al, 2011[59] Sprague-

Dawley rats

Male 200g Lat: S " (2–4d) S # X — 42 days S: # SP — Yes

Speed: — S # TQ

Dist: — S = C

Speed

Zheng et al, 2006[60] Sprague-

Dawley rats

Male 150–200g Lat: S " (4–6d) S # X — 4 weeks S: # SP S # No

Speed: —

Dist: —

Hill et al, 2005[61] Long-Evans

rats

Male 70d/300g Lat: S = C — S " lat 21 days S " COR

500%

— No

Speed: — S "OQ

Dist: — S = C

Speed

Rinwa & Kumar, 2014

[15]

Laca mice Male 12w Lat: S " (1–3d) S # TQ — 4 weeks S " COR — No

20–30g Speed: S "

Dist: —

Bian et al, 2012[62] Kunming mice Male 3–4M Lat: S " (first 5d) S # TQ — 40 days — — No

35–40g Speed: —

Dist: —

Liao et al, 2013[63] Kunming mice Male 30–35g Lat: S " S # TQ — 4 weeks — S = C Yes

Speed: — S "OQ

Dist: —

Zhang et al, 2007[64] Kunming mice Male 20±2g Lat: S " — — 21days — — Yes

Speed: —

Dist: S #

Song et al, 2006[65] ICR mice Male 30–35g Lat: S " (first 5 days) S # TQ — 4 weeks S " COR S # Yes

7w Speed: S = C (first 5

days)

Dist: —

Bisaz et al, 2011[66] C57BL/6J

mice

Male 3M Lat: — S "

speed

S = C 4 weeks S " COR S # Yes

Speed: S " (first 3

days)

S " dist

Dist: S " (day 3)

Cuadrado-Tejedro

et al, 2011[67]

C57BL/6J

mice

Female 8M Lat: S " S # TQ — 6 weeks — — No

Speed: S = C

Dist: —

Liu et al, 2010[68] BALB/c mice Male 8w Lat: S " (3–6d) — — 4 weeks S: # SP

60%

— Yes

Speed: —

Dist: —

Abidin et al, 2004[69] CRS Wistar rats Male 3M Lat: S " (3–6d) S # TQ — 21 days S " COR

600%

— Yes

300–350g Speed: — S "OQ

Dist: —

(Continued)
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Table 1. (Continued)

Study ID Type of

Stress

Animals Sex Age/ Acquisitiona Probea Reversala Stress

Duration

COR/ BW MA

BW SPT

Ghadrdoost et al, 2011

[16]

Wistar rats Male 220±10g Lat: S " (4–5d) S " lat — 21 days S " COR — No

Speed: — S # TQ 6h/day

Dist: —

Kitraki et al, 2004[70] Wistar rats Male and

Female

— Lat: S " S "OQ — 21 days S # COR

males

— No

Speed: — 6h/day S " COR

females

Dist: —

Kumar et al, 2009[71] Wistar rats Male 3M Lat: S " (2–6d) S " lat — 21 days — — No

Speed: — S # TQ 6h/day

Dist: —

Sandi et al, 2003[72] Wistar rats Male 150–175g Lat: — — S = C 21 days — — Yes

Speed: — 6h/day

Dist: S " (day 5)

Trofimiuk & Braszko,

2013[73]

Wistar rats Male 6w Lat: S " (2–3d) — — 21 days — — Yes

Speed: — 2h/day

Dist: —

S " time in border

Walesiuk & Braszko,

2009[17]

Wistar rats Male 300–350g Lat: S = C — — 21 days — — No

Speed: — 2h/day

Dist: —

Walesiuk et al, 2005

[74]

Wistar rats Male 150–160g Lat: S = C S = C TQ — 21 days — — No

Speed: — 2h/day

Dist: —

Wattanathorn et al,

2013[75]

Wistar rats Male 180–220g Lat: — — 21 days — — No

Speed: — 2h/day

Dist: —

Green & McCormick,

2013[13]

Sprague-

Dawley rats

Male 22D Lat: S = C TQ — 15 days — — No

Speed: — 1h/day

Dist: S = C

Meng et al, 2013[76] Sprague-

Dawley rats

Male 227.2 ± 3.6g Lat: S = C S # TQ — 21 days — S # No

Speed: — S = C X 3h/day

Dist: —

Wang et al, 2009[77] Sprague-

Dawley rats

Male 8w Lat: S = C (5d) — — 14 days — S # No

Speed: S = C 6h/day

Dist: —

Wright & Conrad, 2008

[78]

Sprague-

Dawley rats

Male 300g Lat: S = C (1–3d) — — 21 days — S # No

Speed: — 6h/day

Dist: S = C

Wright & Conrad, 2008

[78]

Sprague-

Dawley rats

Male 300g Lat: S ", S = C (2–

3d)

— — 21 days — S # No

Speed: — 6h/day

Dist: S " (day 1)

Xu et al, 2009[79] Sprague-

Dawley rats

Male 230–250g Lat: S " (first 5 days) S " lat — 21 days S " COR — No

Speed: S = C 6h/day

Dist: —

Radecki et al, 2005[80] Long-Evans

rats

Male 397–405g Lat: S " (day 3) S # TQ — 7 days S " COR

300%

— No

Speed: — 2h/day

Dist: —

(Continued)
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Regarding animals’ performance on the reversal test, stressed animals were found to spent
more time in the original quadrant in three studies and fewer crossings in one. With respect to
the total time spent in target quadrant, results were less consensual between reports: two stud-
ies indicated that stressed rodents spent less time in the target quadrant, and two studies
revealed an absence of differences in this parameter.
3.2.2. Novel object recognition. The performance of control and stressed animals on the

NOR task was assessed in 11 studies (Table 2). The majority of studies reported an absence of
differences in the total time exploring new objects between stressed and control animals. Only
one study revealed a reduced total exploration time in stressed animals. On the other hand, five
studies revealed that stressed animals display reduced exploration of new objects (as measured
by the difference between novel and familiar objects). Two studies reported no differences
between the groups. With respect to the discrimination index (DI, calculated as the difference
between time spent exploring novel and familiar objects [36]), five studies reported a signifi-
cantly reduced DI in stressed animals, while two studies reported no differences between the
groups.
3.2.3. Y-Maze. Among the selected studies, 14 experiments were conducted with the YM

(Table 3). Of these, two studies did not report comparisons between groups. In the remaining
studies, cognitive performance was assessed based on the number of entries in novel arms. No
differences between groups were observed in six studies; in four studies, stressed animals had

Table 1. (Continued)

Study ID Type of

Stress

Animals Sex Age/ Acquisitiona Probea Reversala Stress

Duration

COR/ BW MA

BW SPT

Liu et al, 2013[81] Kunming

mice

Male 18–22g Lat: S " (2–3d) S # TQ — 21 days S " COR — No

Speed: — 6h/day

Dist: —

Tian et al, 2013[82] Kunming

mice

Male 10–12w Lat: S " (3–5d) S # TQ — 21 days S " COR — No

Speed: — 8h/day

Dist: —

Muto et al, 2010[83] ICR mice Male 6w Lat: S " (day 5) S = C

TQ

— 4 weeks — S # No

30–32g Speed: — 8h/day

Dist: —

Nagata et al, 2009

[14]

ICR mice 7w Lat: S " (2–6d) S # TQ — 4 weeks — S # No

Speed: — 10h/day

Dist: —

Delgado-Morales

et al, 2012[84]

C57BL/6J

mice

Male — Lat: S = C S = C

TQ

— 9 days S " COR — No

Speed: — S = C

OQ

2h/day

Dist: —

Pawlak et al, 2005

[85]

C57BL/6J

mice

8–12w Lat: S = C

TQ

— 3 weeks — — No

Speed: — 6h/day

Dist: —

CRS–Chronic Restraint Stress; CMS–Chronic Mild Stress; BW–initial body weight (when age is not referred); S–stress group; lat–latency; dist–total

distance; ND–no differences; TQ–time spent in target quadrant; OQ–time spent in opposite/old quadrant; X–number of crossings; MA–included in the

quantitative analysis
aStress in comparison with control group.

doi:10.1371/journal.pone.0163245.t001
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less entries; and in four studies, stressed animals over-performed control animals in four
studies.
3.2.4. Radial armmaze. In the eight studies where the RAM task was used (Table 4), an

obvious effect of stress on cognitive performance was noted: with the exception of two studies,
stressed animals displayed more errors and less correct choices.
3.2.5. Integration of findings. The comparison between control and stressed animals for

the different tasks is summarized on Table 5. The test parameters that yielded the most signifi-
cant differences between groups were the latency on the acquisition phase in the MWM test
(Χ2

(2) = 23.3, p< .001), time spent in the target quadrant (Χ2
(2) = 17.2, p< .001) and the object

recognition in the NOR test (p = .044). In addition, trends for statistical significancewere also

Table 2. Description of the studies using the NOR task. Characteristics: type of stress, duration sex, age (and/or body weight) and comparison of scores

on object recognition and discrimination index between stressed and control animals.

Study ID Type of

Stress

Animals Sex Age/BW Object

recognition

Discrimination

Indexa
Stress

Duration

COR/

SPT

Body

Weight

MA

Briones et al, 2012

[86]

CMS Wistar rats Male 180–

200g

S = C — 6 weeks S # SP S # No

Llorent et al, 2011

[87]

Wistar albino

rats

Male and

Female

— — S # 15 days No

Parihar et al, 2011

[27]

Sprague-

Dawley rats

— 3M — S " 28 days — — No

2h/day

Elizalde et al, 2008

[88]

C57BL/6J

mice

Male 8–10w — S # 6 weeks S # SP S = C No

Solas et al, 2013

[89]

C57BL/6J

mice

— 3M/24M — S # 6 weeks S "

COR

— Yes

Balk et al, 2011

[90]

CRS Wistar rats Male 60D S # — 40 days — — No

1h/day

Braszko et al,

2013[91]

Wistar rats Male 2M S # S = C 21 days — — Yes

2h/day

Trofimiuk &

Braszko, 2013[73]

Wistar rats Male 6w S # S = C 21 days — — Yes

2h/day

Trofimiuk et al,

2014[92]

Wistar rats Male 6w S # S = C 21 days — — Yes

2h/day

Waleziuk et al,

2005[74]

Wistar rats Male 150–

160g

S # S # 21 days — — No

2h/day

Abush & Akirav,

2013[93]

Sprague-

Dawley rats

Male 45d S # — 14 days ND SP S # Yes

200g 1h/day

Bowman & Kelly,

2012[94]

Sprague-

Dawley rats

Female 8w S = C — 35 days — S # No

6h/day

Gomez et al, 2013

[95]

Sprague-

Dawley rats

Male 3M S = C — 7 days S "

COR

S # No

220g 6h/day

Gomez et al, 2013

[95]

Sprague-

Dawley rats

Male 3M S = C — 7 days — S # No

220g 6h/day

Meng et al, 2013

[76]

Sprague-

Dawley rats

Male 227.2

±3.6g

— — 21 days — S # No

3h/day

Nagata et al, 2009

[14]

ICR mice — 7w — S # 6 weeks — S # No

10h/day

CRS–Chronic Restraint Stress; CMS–Chronic Mild Stress; S–stress group; ND–no data; BW–initial body weight (when age is not referred); MA–included in

the quantitative analysis
astress group in comparison to control group.

doi:10.1371/journal.pone.0163245.t002
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observed in the speed on the acquisition phase in the MWM test (p = .054) and in the time
spent at the old quadrant (p = .054). Of note, stressed animals had reduced performance in all
these parameters.

3.3. Meta-analytic results

3.3.1. Global analysis. A general cognitive parameter was calculated based on the scores
on learning and memorymeasures assessed in the different tasks, by averaging the computed
effect sizes for each reportedmeasure. Significant heterogeneity among studies was verified
(Q(27) = 100.8, p< .001) and therefore a Random-Effectsmodel was selected. An overall effect
of stress on general cognitionwas noted (d = -0.75, SE = 0.18, p< .001), such that stressed ani-
mals present overall lower cognitive scores, compared with control animals. The overall effect
is graphically represented on the Forest Plot (Fig 2). The test for funnel plot asymmetry
revealed a significant result (t(26) = -4.03, p< .001).
3.3.2. Morris water maze. Omnibus analysis: The parameters assessed during the acquisi-

tion phase (latency, distance and swimming speed) and the probe trial (time spent in the target
quadrant, number of crossings and swimming speed) were used to estimate a general cognitive
effect size for each study. The total variability in the model was significantly affected by hetero-
geneity (Q(15) = 40.5, p< .001). The Random-Effectsmodel revealed a significant overall effect
of stress on general MWM performance (d = -0.32, SE = 0.11, p< .001). A trend for a signifi-
cant asymmetrywas observedbetween studies included in this analysis (t(14) = -2.11, p = .053).

Regarding the acquisition days on the MWM task, no significant differences were found in
the latency to reach the platform on each of the first two days between groups: Day 1: d = 0.11,

Table 3. Description of the studies using the RAM task. Characteristics: type of stress, duration, sex, age (and/or body weight) and comparison of learn-

ing performance between stressed and control animals.

Study ID Type of

Stress

Animals Sex Age/BW RAM-Learninga Stress

Duration

COR/SPT Body

Weight

MA

Noorafshan et al, 2013

[96]

CMS Sprague-Dawley

rats

Male 260±20g S # CR 56 days S # SP

40%

— Yes

S " errors

Srikumar et al, 2006[97] CRS Wistar rats Male 200–

250g

S # CR 21 days — — No

2–2.5M 6h/day

Veena et al, 2009[98] CRS Wistar rats Male 2–2.5M S # CR 21 days — — No

200–

220g

6h/day

Waleziuk et al, 2009[17] CRS Wistar rats Male 300–

350g

S " errors 21 days — — No

2h/day

Bowman et al, 2003[18] CRS Sprague-Dawley

rats

Female 55–60D S " CR 21 days S " COR S # No

1h/day

Bowman et al, 2003[18] CRS Sprague-Dawley

rats

Female 55–60D S = C 28 days S " COR S = C No

1h/day

Hutchinson et al, 2012

[99]

CRS Sprague-Dawley

rats

Male 275g S = C 21 days — S # No

6h/day

Mika et al, 2012[100] CRS Sprague-Dawley

rats

Male 250–

275g

S " errors 28 days — S = C No

6h/day

CRS–Chronic Restraint Stress; CMS–Chronic Mild Stress; S–stress group; BW–initial body weight (when age is not referred); CR–correct responses; MA–

included in the quantitative analysis
astress group in comparison to control group.

doi:10.1371/journal.pone.0163245.t003
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SE = 0.13, p = .399; Day 2: d = 0.13, SE = 0.13, p = .353. Regarding the third day, following the
assessment of heterogeneity, (Q(7) = 16.4, p = .022, accounting for 56.2% of the variability of
the model), it was observed a significant overall effect of stress on the latency to reach the plat-
form(d = 0.58, SE = 0.21, p = .007), with stressed animals presenting worse performance.

With respect to the probe trial, a marginally significant effect of heterogeneity was observed
(Q(5) = 10.6, p = .061), contributing for 53.7% (I2) of the variance in this model. Consequently,
a Random-Effectsmodel was preferred. A significant overall effect of stress was observed (d =
-0.46, SE = 0.03, p = 0.029).
3.3.3. Sensitivity analysis. Leave-one-out (sensitivity) analyses were conducted for each

independentmeta-analysis. It was observed that the exclusion of a single study did not yield
significant changes in overall effects.
3.3.4. Moderator and mediator effects. To account for the impact of stress implementa-

tion on the overall effect, moderator and mediator meta-analyses were conducted. Using ran-
dom-effects categorical moderator models, it was observed that both CMS (d = -0.67,

Table 4. Description of the studies using the Y-M task. Characteristics: type of stress, duration, sex, age (and/or body weight) and comparison of perfor-

mance between stressed and control animals.

Study ID Type of Stress Animals Sex Age/BW Y-Ma Stress Duration COR/ BW MA

SPT

Henningsen et al, 2009

[101]

CMS Wistar rats Male 230±10g S "

DI

7 weeks S # SP

40%

S = C No

Palumbo et al, 2010[102] c57bl mice — 2M S = C 6 weeks S " COR — Yes

Palumbo et al, 2010[102] Balbc mice — 2M S #

DI

6 weeks S " COR — Yes

Bellani et al, 2006[103] CRS Sprague-Dawley

rats

Male 35D S = C 21 days S " COR S # No

6h/day

Conrad et al, 1996[22] Sprague-dawley rats Male 200–

250gm

S "

DI

21 days — — No

6h/day

Conrad et al, 2003[104] Sprague-Dawley

rats

Male and

Female

— S "

DI

21 days — S # No

6h/day

Gomez et al, 2013[95] Sprague-Dawley

rats

Male 3M S #

DI

7 days S " COR S # No

220g 6h/day

McLaughlin et al, 2007[105] Sprague-Dawley

rats

Male — S = C 21 days — S # No

6h/day

McLaughlin et al, 2007[105] Sprague-Dawley

rats

Male — S = C 10 days — S # No

6h/day

Wright & Conrad, 2005

[106]

Sprague-Dawley

rats

Male 300–400g S = C 21 days — S # No

6h/day

Wright & Conrad, 2008[78] Sprague-Dawley

rats

Male 300g S #

DI

21 days — S # No

6h/day

Wright et al, 2006[39] Sprague-Dawley

rats

Male 225–250g S "

DI

21 days S = C S # No

6h/day

Kleen et al, 2006[107] Sprague-Dawley Male — S #

DI

21 days — S # No

6h/day

Chen et al, 2010[108] ICR mice Male 3w S = C 28 days — S # No

6h/day

CRS–Chronic Restraint Stress; CMS–Chronic Mild Stress; S–stress group; DI–Discrimination Index; BW–initial body weight (when age is not referred);

ND–no data; MA–included in the quantitative analysis
astress group in comparison to control group.

doi:10.1371/journal.pone.0163245.t004
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SE = 0.20, p = .001) and CRS (d = -0.83, SE = 0.28, p = .003) displayed significantly impact on
learning and memory. In addition, restrictedmaximum-likelihoodmeta-regression analysis
revealed that stress duration did not significantly affected the overall effect (R = -0.003,
SE = 0.02, p = .841).

4. Discussion

4.1. General

In this work, we conducted a systematic review and meta-analytic procedures to study the
effect of chronic stress on cognitive performance in mice and rats. Despite the observedhetero-
geneity, it can be generally concluded that the implementation of different protocols of chronic
stress leads to alterations on cognitive functioning, particularly on the consolidation of learned
memories. For instance, in accordance with a previously hypothesized biphasic effect of
chronic stress on the central and peripheral nervous system, it could be expected that shorter
exposure to stress would be beneficial to the organism, whereas longer stress exposures would
lead to detrimental consequences[18]. Although this effect was apparent in the systematic

Table 5. Summary of groups’ comparisons on different MWM phases.

Comparison between groupsa

Task Parameter Total S = C S" S# Sigb

MWM Acquisition

Latency 42 11 (26%) 28 (67%) 3 (7%) Χ2
(2) = 23.3, p < .001

Speed 12 8 (67%) 1 (8%) 3 (25%) p = .054

Distance 8 4 (50%) 1 (13%) 3 (38%) p = .552

MWM Probe

Crossings 7 3 (43%) 0 (0%) 4 (57%) p = .174

Target quadrant 26 7 (27%) 1 (4%) 18 (69%) Χ2
(2) = 17.2, p < .001

Old quadrant 6 1 (17%) 5 (83%) 0 (0%) p = .054

Latency 5 1 (20%) 4 (80%) 0 (0%) p = .136

Speed 4 1 (25%) 1 (25%) 2 (50%) p = .148

Distance 3 0 (0%) 1 (33%) 2 (67%) p = .111

MWM Reversal

Crossings 1 0 (0%) 0 (0%) 1 (100%) p>.999

Target quadrant 4 2 (50%) 0 (0%) 2 (50%) p = .556

Old quadrant 3 0 (0%) 3 (100%) 0 (0%) p = .111

NOR

Object recognition 10 4 (40%) 0 (0%) 6 (60%) p = .044

Discrimination Index 9 3 (33%) 1 (11%) 5 (56%) p = .319

Y-M

Discrimination Index 14 6 (43%) 4 (29%) 4 (29%) p = .842

RAM

Correct responses 6 2 (33%) 1 (17%) 3 (50%) p = .877

Errors 3 0 (0%) 3 (100%) 0 (0%) p = .111

aNumber of studies in which each parameter was compared
bThe differences between group prroportions were tested using chi-square statistics or multinomial test, depending on whether the assumptions for the chi-

square statistic were verified or not, respectively

S–stress group.

doi:10.1371/journal.pone.0163245.t005
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review findings, the results obtained from the meta-regression failed to confirm a significant
association between the duration of stress implementation and the overall estimates. Neverthe-
less, the absence of significant results may stem from the fact that in the majority of studies
(64.3%) stress is implemented during 21 or 28 days, leading to a reduced variability between
studies. As previously indicated, it is frequently accepted that the impact of chronic stress on
cognitive function is dependent on GCs’ overproduction and concomitant hippocampal atro-
phy [37]. Yet, some studies included in this analysis report impairments on cognitive perfor-
mance as a consequence of chronic stress co-occurringwith normal levels of circulating
corticosterone. It might be hypothesized that GCs exert a differential role on cognition, partic-
ularly on memory performance. In fact, it has been proposed that GCs have a dissociative
impact on memory consolidation and retrieval [38]. Alternatively, it is also possible to

Fig 2. Forest plot. Overall effect of stress influence on general cognition. Individual lines represent each study included in the meta-analysis. The

vertical dashed line represents absence of effects between stressed and control animals. The diamond located at the bottom of the figure represents the

overall effect. As can be observed, the diamond does not cross the vertical line, which indicates that overall effect is significant.

doi:10.1371/journal.pone.0163245.g002
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hypothesize that the exposure to stress potentially affects cognitive performance, without
affecting corticosterone levels. In line with this, it has been hypothesized that stress impairs
cognition through a down-regulation of hippocampal glucocorticoid receptors’ levels and pro-
duction of CA3 dendritic retraction[39]. It is also relevant to highlight that although in this
work, we have focused on the effects of stress on HPA axis, this relationship is thought to be bi-
directional. Indeed, HPA axis deregulation is known to contribute to the development of psy-
chosomatic and psychiatric conditions, with its hyper-reactivity being itself associated to an
inadequate response to stress[40].

4.2 Strengths and Limitations

Meta-analytic studies are characterized by high level of evidence, as they allow the computation
of omnibus results frommultiple studies, while accounting for the variability between individ-
ual works. Thus, one major contribution of this work relies on the estimation of overall effects.
We expect that this work may serve as a rigorous means of estimating sample sizes, which will
be critical for detecting true positive effects (i.e. to avoid type II errors). Simultaneously, this
approach will also limit the maximum number of animals to use, which is in line with the Rus-
sell and Burch[41] recommendations expressed in the principles of 3Rs.

Nonetheless, results herein presented should be interpreted with some caution. The system-
atic review process is prone to criticism.On this, one can argue that the process of selecting
studies may be itself biased, due to different factors such as the initial exclusion based only on
abstracts’ reading or to the inclusion of studies from the same group of researchers. However,
this was based on the widely recommended and most accepted practices for conducting sys-
tematic reviews. Another criticismmay be related with the exclusion of tasks encompassing
aversive learning. Several studies demonstrate that the implementation of stress conducts to an
impaired performance in these tasks. Nevertheless, we decided to exclude these tasks with the
goal of avoiding the influence of potential confounders.

Furthermore, a major concern raised in this work is related with the reduced number of
studies included in the meta-analysis. This was particularly disappointing since a considerable
number of studies met the inclusion criteria. However, most of the studies did not report
appropriate statistics required for the computation of effect size measures. As a consequence,
the meta-analytic calculations were estimated based on a reduced number of studies. This also
precluded the appropriate control of covariates of interest, such as animals’ strain and age. As a
good practice and following other research areas, research with animal models would benefit
from a better data reporting. In particular, a comprehensive description of the appropriate sta-
tistics is of critical relevance, as it will allow an aggregation of results from different studies
employing similar experimentalmanipulations. This aspect was also referred in a recent review
that focused on the quality of experimental design in the field[42]. Another relevant issue
highlighted in our work is related with the presence of publication bias. Although we were not
able to test for publication bias in individual parameters due to a reduced number of studies
reporting the same outcome, significant asymmetrywas found on the global analyses.

In addition, aspects pertaining to the experiment organization, including lack of appropriate
randomization or experimenter blinding, raise additional concerns. In particular, randomiza-
tion was not reported in a considerable part of the studies and blindness was rarely referred.
These factors highlight the relevance of improving experimental designs and the current guide-
lines in the reporting of the experiments with animals as a means to ensure an appropriate
level of research evidence.

A further limitation is related with the reduced number of studies with female animals,
which precluded the analysis of the moderating effect of sex. This would be of upmost
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importance, since it has been acknowledged that the effects of stress on anatomical, neuroendo-
crine and neurochemical variables and on cognitive performancemeasures varies between
sexes[18, 43]. For instance, there is evidence showing that male rats, but not female, show
impaired performance in the NOR task after 21 days of chronic stress. These results are also
reflected at the neural and endocrine levels, where male rats show significant atrophy of apical
dendritic branches of the CA3c pyramidal neurons. In contrast, female rats showed a decreased
number of branch points in the basal dendritic area and revealed higher levels of plasma corti-
costerone both at baseline and during stress implementation[43]. These differences highlight
the importance of characterizing the effects of stress, taking into account the sex of the animals.
Moreover, based on our findings, it seems evident that more research with females should be
undertaken,with the goal of better understanding the neurophysiological mechanisms, and
protective factors, of cognitive decline following stress.

Finally, it was noted that structured procedures for the implementation of stress are still
missing. As an example, CRS protocols varied between studies concerning duration of the
restraint sessions (one to six hours) and extension of the protocol (from 14 to 28 days). Addi-
tionally, a recent study from our group demonstrated that methodological differences such as
the implementation of stress protocol in the resting (light phase) or activity (dark phase) of the
animal can differentially impact the performance on probe test[29]. Also, there is considerable
heterogeneity with respect to behavioral assessments. For instance, there is high variability in
the number of acquisition days to assess the animals’ performance on the MWM. Conse-
quently, animals will have different training levels from experiment to experiment, which will
likely induce alterations in the animals’ performance during the probe trial. Reported parame-
ters are also exceedingly heterogeneous, with different measures being reported across studies,
such as swimming speed, latency or distance to the hidden platform. Curiously, some authors
reported an average of the assessed parameter during the acquisition days, while others pre-
sented these parameters during individual days/blocks/sessions. This also limits the assessment
of animals’ learning curve throughout days.

4.3. PROBE–Preferred Reporting Orientations for Behavioral

Experiments

In order to overcome the abovementioned limitations, herein we propose a guidance for
reporting results in animal research, henceforth termed PROBE (Preferred ReportingOrienta-
tions for Behavioral Experiments) (Table 6). In this set of guidelines, we focus on distinct clas-
ses of factors that were experienced as crucial in the development of this work. Specifically, this
guidance focus on several parameters, including: experimental conditions, biological factors,
experimental organization (emphasizing both general aspects and those related to the imple-
mentation of stress protocols), experimental design and statistical analysis. As previously men-
tioned, the rationale behind the selection of these factors relies on our experience in the
selection of studies to conduct this work. Overall, these guidelines are aimed to constitute a
checklist to be progressively established in the animal research field in order to enhance the
quality and accuracy of data reporting.We consider that this will allow an easier communica-
tion between different researchers and laboratories, by enabling the understanding of possible
methodological differences that may lead to contrasting (and even contradicting) outcomes.

5. Conclusions

Cognitive dysfunction is a hallmark of chronic stress in humans. However, in rodents, diver-
gent findings regarding the effects of chronic stress on cognitive performance have been
reported. This raises serious concerns to the translation value of rodent models of chronic
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stress. Despite this heterogeneity, our meta-analytic work provides solid evidence that indeed
rodents mimic this feature of human pathology. As a corollary of this work, we suggest a set of
guidelines for adequate reporting of animal results. We expect this to be helpful in facilitating
the aggregation of results in the field and potentiating an increased level of research evidence.

Table 6. PROBE–Preferred Reporting Orientations for Behavioral Experiments.

Class Factors Descriptors

Experimental conditions Caging conditions Cage type; number of individual/cage; bedding

Diet Diet type; regime (e.g. ad libitum)

Environmental Temperature/humidity, light cycle

Experimental subjects’ provenience Suppliers; in-house crossings

Biological Species —

Strain —

Genotype —

Sex —

Age Age in days, weeks or months

Body weight At several time points including pre- and post-experimental involvement

Previous involvement in other

experiments

—

Experimental Organization

(general)

3Rs principle Replacement, Reduction and Refinement

Qualified researcher —

Experimental groups Number of experimental groups. Detailed description of manipulations that

were implemented

Handling duration, periodicity, procedures

Subject Randomization Were animals randomly distributed by groups; if not describe distribution

criteria

Blinding Was the researcher who performed the behavioral assessment aware of

animals’ experimental group

Experimental Organization

(stress)

Type of stress Type of stress: Chronic Restraint Stress, Chronic Mild Stress, Early-life

stress, Social stress

Description of stressors Description of the different stressors applied by day, if applicable

Duration of stress Number of days of chronic stress implementation

Basal corticosterone levels after stress Serum corticosterone levels after stress period in all experimental groups

Assessment of anhedonic behavior Assessment of anhedonia through the quantification of sucrose preference

Assessment of anxiety-like behavior Assessment of anxiety-like behavior by using a validated task such as the

elevated plus maze

Assessment of helplessnees behavior Use of validated task (e.g. Forced Swimming Test/Tail suspension) to

evaluate depressive-like behavior

Interval between stress protocol and

behavioral assessment

Time between the end of the implementation of the stress protocol and

behavioral assessment

Description of the behavioral

assessment task

Task used for behavioral assessment (e.g. MWM, NOR, RAM, Y-M, Passive

Avoidance)

Duration of behavioral assessment Number of trials in each stage (e.g. number of acquisition days, interval

between acquisition and probe trial)

Experimental design and

statistical analysis

A priori analysis Confidence level (and consequently type I error), Statistical power (and

consequently type II error) and sample size calculation

Sample size —

Statistical measures of task parameters Mean and standard deviations for each parameter assessed in behavioral

tasks

Effect size Quantification of the magnitude of the effect of a given manipulation

Excluded subjects and exclusion criteria —

doi:10.1371/journal.pone.0163245.t006
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Taken together, the present work may be a relevant reference for future studies, by potentiating
a better research planning and reporting in work involving animal experimentation. This will
also potentiate the validity (face, predictive and construct validities) of animal models and their
translation value.
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